1. Recall the population model with carrying capacity, $\frac{d}{d t} P(t)=r P(t)(K-P(t))$. The solution to this problem is given by the function

$$
P(t)=\frac{K}{1+\left(\frac{K}{P(0)}-1\right) e^{-K r t}}
$$

(a) Taking $K=50, r=1 / 50$, run the code with $P(0)=100$ and $P(0)=10$ and explain why these graphs are consistent with our intuition.
(b) Using the equation of $P(t)$ provided above, using your algebraic skills, verify that if $P(0)=K$ then $P(t)=K$, and if $P(0)=0$ then $P(t)=0$. (You may need to rearrange the equation!)
2. (a) (Allee Effect) So far our models have been unable describe population decline of endangered species. We now develop a model with this additional property. We seek a function $f(P(t))$, where $\frac{d}{d t} P(t)=f(P(t))$, such that

$$
\left\{\begin{array}{l}
f(0)=0 \quad f(A)=0 \quad f(K)=0 \\
f(P(t))<0 \quad \text { for } 0<P(t)<A<K \\
f(P(t))>0 \quad \text { for } A<P(t)<K \\
f(P(t))<0 \quad \text { for } P(t)>K
\end{array}\right.
$$

Hint: Start with $f(P(t))=a P(t)^{3}+b P(t)^{2}+c P(t)+d$ and then solve for a, b, c, d.
(b) Once you have the model, verify that it predicts the correct behaviour using the Allee effect code provided. Take $\mathrm{K}=50, \mathrm{~A}=10$ and $\mathrm{r}=0.001$, then choose $P(0) \geq 0$ at different values to see if it is consistent with the properties described above!
3. (Bonus Problem) In this problem we study a new model which includes harvesting. Let $P(t)$ denote the population of fish off the coast of Vancouver Island. Let H denote the maximum fishing rate of the entire fleet of ships, and let A denote the amount of fatigue the fisherman have, meaning if $A=0$ the fishermen are fishing quickly since they are full of energy and if A is large they are fishing slowly due to fatigue. The change of fish population is given by the model

$$
\begin{equation*}
\frac{d}{d t} P(t)=P(t)(1-P(t))-\frac{H P(t)}{A+P(t)} \tag{1}
\end{equation*}
$$

where $H \geq 0$ and $A \geq 0$.
(a) Describe the fishing model when $H=0$.
(b) The harvesting rate in this model is given by $\frac{H P(t)}{A+P(t)}$, describe what happens when $A=0$?
(c) Find all fixed points of this model.
(d) Show that if $H>\frac{(A+1)^{2}}{4}$, then the model only has one fixed point.
(e) Using the code provided, can you find choices of A and H which lead to overfishing? Sustainable fishing (the fish population remains positive)? Can you find choices of A and H leading to multiple positive fixed points? If so, describe what happens to the fish population for different $P(0)$.

