Manipulating Equations

$$
\begin{aligned}
2 \times 3 & =6 \\
\frac{2 \times 3}{3} & =\frac{6}{3} \\
2 & =2
\end{aligned}
$$

Quantity a times quantity b, or $a \times b$, is often written just as $a b$.

$$
\begin{aligned}
a b & =c \\
\frac{a b}{b} & =\frac{c}{b} \\
a & =\frac{c}{b}
\end{aligned}
$$

$$
\frac{a b}{b}=\frac{c}{b} \quad \text { cancel each } b \text { on the left }
$$

$$
\begin{aligned}
\frac{a}{b} & =c \\
\frac{a}{b} b & =c b \\
a & =c b
\end{aligned}
$$

$$
\begin{array}{lll}
K=\frac{1}{2} m v^{2} & \text { kinetic energy } & c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
U=-\frac{G M m}{r} & \text { potential energy } & G=6.67 \times 10^{-11} \quad \text { speed of light } \\
E=k+U & \text { energy } & M_{E}=5.974 \times 10^{24} \mathrm{~kg}
\end{array}
$$

Problem 1 Use energy to find the escape speed of the Earth. Use $R=R_{E}=$ radius of Earth and $M=M_{E}=$ mass of Earth.

a) When the object is at rest very far from the Earth, what is its kinetic energy K ?
b) When the object is at rest very far from the Earth, what is its potential energy U ? Think about this.
c) Find an expression for the object's energy, $E_{2}=$ kinetic energy + potential energy, when it is at rest very far from the Earth.
d) Find an expression for the object's kinetic energy when it gets to the Earth. Express you answer in terms of m and $v_{e s c}$.
e) Find an expression for the object's potential energy when it gets to the Earth. Express your answer in terms of M_{E}, m, G, and R_{E}.
f) Find an expression for the object's energy, $E_{1}=$ kinetic energy + potential energy. when it reaches the Earth's surface.
g) The object's energy doesn't changes as it falls, so set $E_{1}=E_{2}$, and find the escape speed $v_{\text {esc }}$.

Problem 2. Use energy to find the maximum height h when

a) Find an expression for the energy, $E_{1}=$ kinetic energy + potential energy, at launch.
b) Find an expression for the energy, $E_{2}=$ kinetic energy + potential energy, at maximum r.
c) These two energies are equal, i.e.,set $E_{1}=E_{2}$, and cancel m from each of the terms.
d) Solve for the height h by Using $r=R_{E}+h$.
e) Find the height h.

