$$
\begin{array}{ll}
c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad \text { speed of light } \\
& \\
r_{s}=\frac{2 G M}{c^{2}} \quad \text { Schwarzschild radius } & M_{S}=6.67 \times 10^{-11} \quad \text { gravitational constant } \\
&
\end{array}
$$

Problem 1 crushing experience. Hoover hovers at $r=60 \times 10^{3} \mathrm{~m}$ for a black hole that has a mass of 15 solar masses.
a) Calculate the Schwarzschild radius r_{s} of the black hole.
b) Calculate the " g-force" (in Newtons) that Hoover experiences,

$$
F=\frac{G M m}{r^{2} \sqrt{1-\frac{r_{s}}{r}}},
$$

where M is the mass the black hole and $m=70 \mathrm{~kg}$ is Hoover's masss.
c) Repeat parts a) and b) for a 5 solar mass black hole.

Project find the escape velocity of a black hole; discuss energy in relativity; use energy to derive an expression for $\Delta r / \Delta t$ for something that falls toward a black hole; discuss the physical meaning of $\Delta r / \Delta t$.

